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Abstract
Previous approaches to computational models of narrative have successfully considered the internal coherence of the narrative’s structure.
However, narratives are also externally focused and authors often design their stories to affect users in specific ways. In order to better
characterize the audience in the process of modeling narrative, we introduce Indexter: a computational model of the Event-Indexing
Situation Model, a cognitive framework which predicts the salience of previously experienced events in memory based on the current
event the audience is experiencing. We approach computational models of narrative from a foundational perspective, and feel that salience
is at the core of comprehension. If a particular narrative phenomenon can be expressed in terms of salience in a person’s memory, the
phenomenon, in principle, is representable in our model. This paper provides the fundamental bases of our approach as a springboard
for future work which will use this model to reason about the audience’s mental state, and to generate narrative fabula and discourse

intended to achieve a specific narrative effect.

Keywords: Narrative understanding and generation, representations, retrieval and indexing, artificial intelligence, cognitive psychology

1. Introduction

Historically, computational models of narrative have fo-
cused on representation of the diverse structural properties
of narratives (Lebowitz, 1985; Cavazza et al., 2001; Riedl
et al., 2003; Szilas, 2003). These models consider only
the internal properties of the narrative. Authors, however,
intentionally design stories to affect their audience in
specific ways (Bordwell, 1989; Holland, 1989). As
Szilas (2010) has suggested, a computational model of
narrative must go beyond simple story structure and
account for how the experiencer receives the narrative.

In this paper, we provide initial steps toward a compu-
tational model that accounts for a user’s comprehension
process during the experience of a narrative. This model,
which we call Indexter, explicitly reasons about the
salience of narrative events in a person’s memory as they
experience an unfolding story. The salience of a narrative
event indicates how recallable the event is in a person’s
mind. An author’s manipulation of the salience of events
during a narrative experience is a key means used to affect
a reader’s comprehension of the story’s structure. Salience
enables the drawing of connections between new material
and earlier parts of the story. Salience prompts expectations
about upcoming action. Lack of salience obscures
predictions and facilitates surprise or misdirection. A
model of narrative that accounts for salience could be
linked to existing models that build off of salience to
account for a reader’s inference-making process (Niehaus
and Young, 2010), her feelings of suspense (Cheong and
Young, 2006), and her level of surprise (Bae and Young,
2009), along with many other narrative phenomena.

Though our current model focuses on the manipulation
of salience in narrative, salience alone is not sufficient
for the modeling or creation of effective stories. A
story’s internal structure clearly plays a role in how a
reader understands it (Graesser et al., 2002). Thus, the
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computational model that we present extends an existing
planning-based approach to narrative (Young, 2007), which
models coherent story structure (Riedl and Young, 2010).
We augment this plan-based approach with information that
allows us to model the updates being made to a reader’s
mental model of the story during online comprehension,
that is, during the process of experiencing the narrative. To
do this, we incorporate elements into the planning model
drawn from an empirically verified cognitive model of
online comprehension called the Event-Indexing Situation
Model (Zwaan et al., 1995a; Zwaan and Radvansky, 1998).
While we are basing our work on a planning-based
knowledge representation previously developed to generate
stories, our discussion here does not describe a system that
uses this representation in a generative fashion. The work
we describe here is preliminary. It is the first step of a four-
part research agenda involving:

1. Development of a plan-based knowledge representa-
tion for narratives and an algorithm that characterizes
the reader’s construction of event-indexing situation
models.

2. Validation of the predictive power of the algorithm and
representation.

3. Integration of the computational model into a genera-
tive system.

4. Validation of the generative system in an online
comprehension scenario.

A generative system which uses a computational model
that characterizes both the internal structure of a narrative
and its effects on a reader during online comprehension
will lead to the creation of more engaging, effective and
understandable stories.



2. Theoretical Bases of our Implementation

Our work has two fundamental bases. The first basis is a
cognitive model of online story comprehension, the Event-
Indexing Situation Model (Zwaan et al., 1995a; Zwaan and
Radvansky, 1998). The second basis is an Al plan-based
model of narrative, which follows directly from IPOCL
(intentional, partial order, causal link) plans (Riedl and
Young, 2010).

2.1. The Event-Indexing Situation Model

The Event-Indexing Situation Model (EISM) is a cognitive
model of online narrative comprehension.  Cognitive
psychologists studying narrative comprehension define a
situation model as an integrated mental representation of a
particular situation in the story world. Situation models are
formed by a reader from an amalgamation of information
explicitly stated in a narrative and inferred by the reader
(see McNamara and Magliano (2009) for a review of
several variants of situation models). In particular, the
EISM posits that, as we perceive a narrative, we discretize
the narrative into events, or chunks of narratively important
action (Zwaan et al.,, 1995a). This event segmentation
centers around verb phrases in text and character actions
in film (Zacks et al., 2009). Each event is indexed by the
reader relative to a number of key factors or dimensions
including:

e time index - the time frame in which the event occurs
e space index - the space in which the event takes place

e protagonist index - whether or not the event involves
the protagonist

e causal index - the event’s causal status with regards to
previous events

e intention index - the event’s relatedness to the
intentions of a character

The EISM makes predictions about the salience of events
based on these indices.

2.1.1. The EISM and Memory

Zwaan and Radvansky (1998) discuss the interplay between
the EISM and memory in the context of Ericsson and
Kintsch’s (1995) conceptualization of Short-Term Working
Memory (STWM) and Long-Term Working Memory
(LTWM). Zwaan and Radvansky point out that,

It is possible in highly practiced and skilled
activities, such as language comprehension,
to extend the fixed capacity of the general
short-term working memory (STWM) system
by efficiently storing information in long-term
memory and keeping this information accessible
for further processing. This expansion of STWM
is called long-term working memory (LTWM)
and corresponds to the accessible parts of a
previously constructed mental representation in
long-term memory.

(Zwaan and Radvansky, 1998)
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The STWM is represented in the EISM by a structure
known as the current situation model.

Definition 1 (Current Situation Model) The current situ-
ation model refers to the model of the event that is currently
being perceived. This is the model at time t,, for a given
event ey,.

When an event is perceived, a situation model of that event
is built to identify what it’s situation model indices are with
respect to all previously perceived events. All previously
perceived events represent Ericsson and Kintsch’s idea of
LTWM, which is represented in the EISM by a structure
known as the integrated situation model.

Definition 2 (Integrated Situation Model) The
integrated situation model refers to the model of the
events that have been perceived up until right before the
event currently being perceived. This is the model for times
ty through t, 1, for events ey through e,,_;.

The STWM maintains retrieval cues to information in
LTWM to help with information storage and retrieval. The
metaphor of a hash map is useful here: The STWM can
be thought of as a set of keys to the values that are held in
LTWM. For the EISM, the keys are all the unique situation
model indices that exist in the development of a story. Each
value in this memory hash map is a list of events that
share a particular situation model index of a story. Online
comprehension in the EISM is modeled as follows: each
incoming event is analyzed (by the audience') to determine
which situation model indices it contains. The audience
tries to match the incoming event to the most recently
foregrounded events, or the events that are currently most
salient.

The matching between events is done by verifying if there is
any overlap between the incoming event’s situation model
indices and the most recently foregrounded events’ indices.
If the incoming event does not share any indices with the
most recently foregrounded events, then a lookup is done to
the memory hash map. If the lookup is successful (meaning
that the situation model indices have been encountered
before), the corresponding values (the previous events)
become foregrounded. The incoming event is then inserted
in the memory hash map and associated to the events that
have been foregrounded. If the lookup is unsuccessful
(meaning that we have encountered a completely novel
situation), a new key is created with the new indices, and
the key is mapped to the current event in the memory hash
map.

2.1.2. Example Interaction Between the EISM and
Memory

Consider a story which is perceived by the audience as

a sequence of events ¢ (e1,€a,...,e10). In this story,

only events e; and e;p have the same causal index (i.e.,

"In this paper, we refer to an individual experiencing a
narrative as the audience. This term is intended to make
no commitment to the medium through which the narrative is
experienced, in contrast to terms like reader, viewer or player,
which might imply restriction to a specific storytelling context.



they form part of the same causal chain). Recall that,
as each individual event is perceived, a current situation
model is created for it and it is subsequently integrated
with the integrated situation model before the next event
is perceived. According to the EISM, when event e is
perceived, it acts like a retrieval cue to event e; due to
their common causal index. Thus, the EISM will predict
that, after having perceived event e;, event e; will be more
salient in memory than events e; through eg.

The EISM does not make a commitment to determining
which indices prove to be stronger predictors of recall.
The strength of recall is operationalized in the cognitive
psychology literature through various means including
word association tasks (Zwaan et al., 1995a), question-
answering tasks (Graesser and Franklin, 1990), timed
reading tasks (Zwaan and Radvansky, 1998), and narrative
summarization tasks (Graesser and Clark, 1985).

2.1.3. Building the indices in the EISM

The EISM establishes a set a criteria for assigning a
situation model index to an event, with one criterion
for each situational dimension: time, space, protagonist,
causation and intention. Since the EISM makes predictions
on salience relative to how many indices are shared between
events, the criteria for indices is best expressed in terms
of when events share an index.? The criteria for assigning
situation model indices is succinctly described by Zwaan et
al. (1995a) and we paraphrase and expand upon it here:

e Two events share a time index if they occur in the same
time frame. This time frame is identifiable using the
criteria employed by Zwaan (1996): two events are
assumed to share a time index if they are perceived
by the audience in sequential order and neither event
contains an explicit discontinuity in time.

e Two events share a space index if they occur in the
same spatial region.

e Two events share a protagonist index if they both
involve the story’s protagonist. The protagonist index
is special in that it contributes to an event’s salience,
regardless of whether the event has been foregrounded
or not. The authors of the EISM distinguish a single
character as the protagonist of a story, and the model
predicts that any event that deals with the protagonist
is more likely to be salient than events that do not deal
with the protagonist.

e Two events share a causation index if they are related
causally. A direct causal relation is directed, from
one event to another. A direct causal relation from
event e; to e exists, as specified by Trabasso and
Sperry (1985), if it meets the logical criteria of
necessity and if the events pass a counterfactual test
of the form: if event e; had not occurred, then in the
context of the story, event e5 would not have occurred.
An indirect causal relation between two events e; to

2A situation model index is a property of the event,
independent of other events. In other words, each event has an
individual time, space, protagonist, causation and intention index.
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e, exists if there is a path in the transitive closure
of the causal relation from e; to e,,. Trabasso and
Sperry (1985) reference four types of causal relations
that can exist between events:

— Enablement is a causal relation that involves
events which are necessary but not sufficient to
cause other events.

— Motivation and Psychological Causation are
causal relations that are similar in that they both
purposefully effect a change in the world, with
the difference that motivation is goal-directed
whereas psychological causation is not.

— Physical Causation involves a naive interpre-
tation of the physical world or of mechanical
causality between objects and/or people.

e Two events share an infention index if they are part
of the same plan to achieve a goal. Goal structures
are derived from General Knowledge Structures as
identified by Graesser and Clark (1985).

The EISM situational indices are coded dichotomously;
that is, two events can either share an index, or not. Zwaan
notes that the model may be extended in future work.

2.2. The IPOCL Planning Model

Intentional Partial Order Causal Link (or IPOCL) plans
are a data structure for representing stories that explicitly
model the events of a story along with the casual, temporal,
and intentional relationships between them (Young, 1999;
Riedl and Young, 2010). Here we introduce the [IPOCL
Planning Model, and give a brief formal description of what
an IPOCL plan looks like.

A plan is a sequence of steps that describes how a world
transitions from its beginning, or initial state, to its end, or
goal state (Newell and Simon, 1961). In narrative terms, it
describes how the plot of a story causes the story world to
transition from beginning to end.

Definition 3 (State) A state is a single function-free
ground predicate literal or a conjunction of literals
describing what is true and false in a story world. The
initial state completely describes the world before the start
of a plan. The goal state is a conjunction of literals which
must be true at the end.

Definition 4 (Planning Problem) The initial and goal
states together make up the planning problem to which a
particular IPOCL plan is the solution.

Characters, items, and places in the story are represented as
logical constants. The actions which materialize between
the initial and goal states make up the plan. Actions are
created from templates.

Definition S (Operator) An operator is a template for an
action which can occur in the world. It is a three-tuple
(P, E, A) where P is a set of preconditions, literals which
must be true before the action can be executed, E is a set
of effects, literals which are made true by the execution



of the action (Fikes and Nilsson, 1971), and A is a set
of characters which must consent to the execution of that
action (Riedl and Young, 2010). For generality, P, F,
and A can have variable terms to convey ideas such as
“creature x steals item 15.” An operator for which A = )
is called a happening, these actions represent accidents or
the forces of nature which are not intended by anyone.

Definition 6 (Planning Domain) The set of all available
operators is called the planning domain. A domain
describes all the possible kinds of actions that can occur.

An instance of an operator, called a step, represents an
actual action that will take place in a story.

Definition 7 (Step) A step is a three-tuple (P, E,A),
where P, E, and A are the preconditions, effects, and
consenting characters from the step’s operator. If any
literals in P or E contain variables, or if any symbols in
A are variables, those variables must each be bound to a
single constant. The step “the dragon steals the treasure”
is an instance of the operator “creature x steals item y.”

Plan steps are partially ordered with respect to time
(Sacerdoti, 1975).

Definition 8 (Ordering) An ordering over two steps is
denoted s < u, where s and u are steps in the plan and
s must be executed before u.

A plan must guarantee that, for each step, all of the step’s
preconditions are true before it is executed (McAllester and
Rosenblitt, 1991). A precondition can be true in the initial
state or made true by the effect of an earlier step.

Definition 9 (Causal Link) A causal link is denoted s TN
u, where s is a step with some effect p and u is a step with
some precondition p. A causal link s 2w implies the
ordering s < u. A casual link explains how a precondition
of a step is met. In other words, p is true for u because s
made it so. Step u’s causal parents are all steps s such that
there exists a causal link s 2> u. A step’s causal ancestors
are its causal parents in the transitive closure of the parent
relation.

IPOCL plans contain structures called frames of commit-
ment to explain a character’s actions in terms of individual
goals (Riedl and Young, 2010).

Definition 10 (Intention) An intention is a modal predi-
cate of the form intends(a, g,) where a is an actor and
ga Is a literal that actor a wishes to be true. A motivating
step is a step which causes an actor to adopt a goal. It has
as one of its effects an intention—a modal predicate of the
form intends(a, g,). A final step is a step which achieves
some actor goal. It must have g, as one of its effects.

The steps which materialize between a motivating and final
step make up a frame of commitment.
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Definition 11 (Frame of Commitment) A frame of com-
mitment is a five-tuple (S', P,a,gq,sy) where S’ is a
subset of steps in some plan P, a is a character, g, is some
goal of character a, and sy is a final step which has effect
ga- The steps in S are all the steps which character a takes
in order to achieve goal g,. All steps in S’ must be causal
ancestors of sy, and all steps in S’ must be ordered before

Sf.

Simply put, a frame of commitment describes the steps an
actor takes to achieve some goal, and the step which finally
achieves the goal.

The artifact produced by a planner is a plan:

Definition 12 (Plan) A plan is a five-tuple (S, B,O, L, I)
where S is a set of steps, B a set of variable bindings, O
a set of orderings, L a set of causal links, and I a set of
frames of commitment. A complete plan is guaranteed to
achieve the goal from the initial state. A plan is complete if
and only if:

e For every precondition p of every step u € S, there
exists a causal link s 2> w € L. This means that every
precondition of every step is satisfied.

e For every step s = (P,E,A) € S, and for every
character ¢ € A, there exists a frame of commitment
i =(S",P,a,ga,Sy) such that s € S" and ¢ = a. This
means that every step which is not a happening is a
member of some frame of commitment that explains
why the characters who carry out that step choose
to carry it out. In short, every action is taken for a
reason.

e For every causal link s 2y w e L, there is no step
t € S which has effect —p such that s < t < uis a
valid ordering according to the constraints in O. In
other words, it is not possible that a causal link gets
undone before it is needed.

IPOCL plans are formal data structures which can be
manipulated by planning algorithms (Riedl and Young,
2010). They model important information about stories
which, we claim in this paper, can be modified to
operationalize the EISM to predict how well humans
remember certain steps.

3. Indexter: a model that characterizes
Situation Models using Plan Structures

Indexter is realized by expanding the IPOCL plan repre-
sentation with information regarding EISM relevant data.
As defined, the IPOCL plan representation already captures
many of the features needed to represent EISM structures,
and the enhancements we outline are straightforward to
introduce. By extending an existing knowledge represen-
tation used to characterize the structural properties of a
narrative, Indexter can characterize both proper narrative
structure and the online mental state of the audience
which experiences the narrative. This characterization
is a foundational approach to a computational model
of narrative; our model does not currently characterize



specific narrative phenomena such as tension, suspense,
expectations, humor, character development, etc. Instead,
our model is intended to provide a foundation for
prompting the experience of these narrative phenomena
thorough the facilitation of the manipulation of salience.
Events in the EISM framework map to steps in an IPOCL
plan, assuming that the steps center around verbs (in text)
or actions (in film). In the remaining discussion, we use the
EISM term event and the IPOCL term step interchangeably.
Recall that the IPOCL model represents elements of the
fabula, the set of events, characters, locations and the other
entities within the story world. The EISM deals with online
narrative comprehension which occurs when the audience
perceives the narrative’s discourse, or the telling of the
events in a story.

To extend IPOCL with the EISM knowledge representation,
we leverage IPOCL for use as a discourse plan, a structure
which contains the elements from the story that will be
included in the story’s telling to the audience (Young,
2007). In general, discourse plans do not have to preserve
the ordering of events as they occur in the fabula (for
instance, as in cases of foreshadowing or flashback (Bae
and Young, 2009)), nor do they have to contain all the
events that occur in the story (e.g., as in the case of
temporal ellipsis). However, in the discussion here, we
use a fairly straightforward set of extensions to the [IPOCL
plan representation already used to model fabula in order to
characterize just those elements of the narrative discourse
relevant to the current work. The way we represent all the
EISM indices is explained in the following sections.

3.1. Time

Time is implicitly represented in the current IPOCL
model. Steps are modeled as executing instantaneously
and TPOCL’s temporal representation provides a partial
ordering over all of a plan’s steps’ times of occurrence.
Rather than extending this base representation with
more complex models of time as has been done with
temporal planning approaches (e.g., that of Penberthy
and Weld (1994)), we approximate this by requiring that
each operator in an IPOCL planning domain contain a
distinguished variable called the time frame. In any IPOCL
plan, each step’s time frame variable must be bound to
one of a list of constants that refer to time frames in the
given narrative. These constants, enumerated as part of a
planning problem’s initial state description, can be defined
either by the domain creator or automatically, for instance,
by a temporal cluster analysis of the steps in the plan.

3.2. Space

In the current IPOCL model, spatial properties of steps are
represented only to the extent that the writer of an operator
includes spatial relations in its preconditions and effects.
To model where an event occurs, we require that each
operator in an IPOCL plan domain contain a distinguished
variable called the location. In any IPOCL plan, each
step’s location variable must be bound to one of a list
of constants that refer to locations in the given narrative.
These constants, enumerated in a planning problem’s initial
state description, can be defined by the domain creator or
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automatically, for instance, by inferring a step’s location
from the bindings of variables that appear in the step’s
preconditions or effects.

3.3. Protagonist

In the EISM model, the protagonist is single designated
character that fulfills the role for an entire story. To model
the protagonist, we require that an IPOCL initial state
description contain an entry designating a single character
as the protagonist for the given story plan. For any given
step in a plan, the protagonist index captures whether or
not events involve a story’s protagonist. The IPOCL plan
representation already contains elements that can be used to
characterize the protagonist index of each step. Each step
designates a set A of consenting characters. A contains zero
or more variables that are bound to the agents that consent
to the execution of that step. By comparing the designated
protagonist for a story with the members of A, we can
easily check whether or not the protagonist is involved in
the execution of the step.

3.4. Causation

The causation index captures whether or not events have
a causal relation. The IPOCL plan representation contains
several elements that can be used to represent the causation
index. Recall that Trabasso and Sperry (1985) used
four types of causal relations in their analysis of causal
structure. One of these causal relations (physical causation)
is currently not represented in our initial work. The other
three causal relation types are represented as follows:

e Enablement

An IPOCL causal link represents an enablement
causal relation. In an IPOCL plan, a causal link’s
originating step s; is a necessary but not sufficient
condition for the subsequent step s; through s; LN 55,
because it is possible for any other step s, to establish
p for s;, creating a causal link sy, N 55.

e Motivation and Psychological Causation

A causal link s; LN s;, where s; is an IPOCL motivat-
ing step represents a motivation causal relation. Recall
that a motivating step is a step that causes an actor to
adopt a goal. For all the steps taken by that actor in
service to that goal, two types of psychological causal
relations could occur:

1. All effects of steps taken in service of the goal
that do not establish a causal link to any other
step that is executed by the actor are said to
be psychologically caused by the action that
establishes the effects.

2. All effects that are made true by the final step
(that achieves the effects that define the goal)
which are not part of the goal condition are said
to be psychologically caused by the final step.

Psychological causal relations are contextualized by
a specific goal state and an actor that intends to
achieve it. Informally, they can be thought of as



unwanted/unplanned side-effects of actions taken in
service of a goal.

3.5. Intention

The intention index characterizes the role that an event
plays in a character’s plan to achieve a single goal. The
IPOCL plan representation currently contains elements that
can represent the intention index through the IPOCL frames
of commitment. A frame of commitment describes the
steps an actor takes to achieve a specific, designated goal
condition. We say that two steps share an intention index
just when they are part of the same IPOCL frame of
commitment.

4. Indexter in action: using the model

Indexter allows for calculating the saliency of any
previously experienced event with respect to the current
event being perceived. Being able to estimate salience at
any point by using our model will allow an Al planner
to generate a narrative which can directly operate on the
salience of events in the audience’s mind. This generative
system would be able to actively track and manipulate
the audience’s mental model to achieve specific narrative
phenomena that arise, in part, from the dynamics of
salience.

4.1. Calculating Salience

Once an [POCL plan has been augmented to keep track
of EISM information, one way to compute salience is by
taking a majority-vote of the indices that are referenced
by the event that is currently being perceived. Recall that
indices are dichotomously tracked for events. If two events
share an index, the value for that index is 1; otherwise, it
is 0. Assume that salience can be represented with a real-
numbered value between 0 and 1, where O represents no
salience whatsoever and 1 represents maximum salience.
Salience is calculated from the parameter event e; with
respect to the current event being perceived e,,. Each EISM
index is assigned a weight coefficient such that the total
salience will be between 0 and 1. Under these constraints,
an equation to calculate the salience of any event e; is:

salience(e;,en) = wite, + WasSe, + W3Pe,

+w4cen + wSien (1)

Where ¢, is the time index, s, is the space index, pe,
is the protagonist index, c., is the causality index, 4., is
the intentionality index for the event that is currently being
perceived e,. Each index represents the overlap on that
index between any event e; and the current event e,,. For
any situation model index of the currentevent z. , z., =1
just when event e; shares the = index with the current event
en and z., = 0 otherwise.

The coefficient w; represents the contribution (weight) of
its respective index to the saliency of the parameter event
e;. The coefficients are restricted to sum to 1, that is,
> ws = 1.

Clearly, assigning specific weights to the various indices
will affect the salience of events in a significant way.
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Unfortunately, the authors of the EISM do not specify
which indices are stronger predictors of recall. In future
work, we will seek to determine the values for these
indices empirically, through experimental evaluation. For
the current discussion, however, a straightforward way to
weigh the indices is to assign each an equal value. For five
indices, this implies w; = 0.2. Equation 1 then becomes:

salience(e;, e,) = 0.2t +0.2s., + 0.2p,,

+0.2¢.,, + 0.2, 2)

We use equation 2 to calculate the salience of events in the
following example.

Example salience calculation: The Knight’s Quest
Consider the following story, in which each event is tagged
with an event marker that illustrates the order in which the
audience (in this case, the reader) perceives the events:

A dragon flies to a castle (e1), steals the
treasure in the castle (es), and flies off to a cave
(e3). A couple of hours later the knight smiths a
sword at the castle (e4) to prepare for his quest.
The following day, the knight travels to the cave
(es), slays the dragon (eg), reclaims the treasure
(e7), and returns to the castle (eg).

In this story, we designate the Knight as the protagonist.
This story is a totally ordered, text-based realization of a
plan that IPOCL can produce (Riedl and Young, 2010).
This plan is illustrated in Figure 1, augmented with our
extended knowledge representation elements. Time, space,
and protagonist indices are indicated in the steps. The steps
are grouped into their specific frames of commitment, and
are connected by causal links shown as arrows.

To calculate the salience of a given step, we use Equation
2. For example, to calculate the salience of step
e = (steal Dragon Treasure) at the step eg =
(slay Knight Dragon), we determine how many
indices overlap between event es and event eg. Event es
is not connected in space, time, or protagonist to event eg.
The events are also not in the same frame of commitment.
They are, however, connected causally. Using Equation 2:

(0.2 teg) + (0.2 5¢5) + (0.2 - Peg )
(0.2 coy) + (0.2 igy)

(0.2-0)+ (0.2-0) 4+ (0.2-0)
+(0.2-1) +(0.2-0)
salience(ea,e6) = 0.2

salience(ea, e6) =

salience(es, e6) =

The salience of all steps relative to eg can be calculated
in the same manner. For comparison, consider the step es
= (walk Knight Cave). Event e; shares the time,
space, protagonist, causation and intention indices with
event eg, such that the salience of event e at event eg is:

salience(es, eg)

(0.2-1)+(0.2-1) + (0.2- 1)
+(0.2-1) +(0.2-1)

salience(es,eq) = 1



Frame of Commitment: 1, Dragon

(fly Dragon Castle)
Time:1

(steal Dragon Treasure)
Time:1

Space: Castle Space: Castle
Protagonist: No Protagonist: No

(fly Dragon Cave)
Time:1

Space: Cave
Protagonist: No

Protagonist = Knight

X, T .

// 1

|_t€mith Knight sword)

Frame of Commitment: 2, Knight

Time:2
Space: Castle
Protagonist:Yes
(walk Knight Cave) (slay Knight Dragon)
| Time:3 |y Time:3
Space: Cave Space: Cave
Protagonist: Yes Protagonist: Yes

(take Knight Treasure)
Time:3

Space: Cave
Protagonist: Yes

(walk Knight Castle)
Time: 3

Space: Castle
Protagonist: Yes

X

4

Figure 1: Example IPOCL Plan for The Knight’s Quest, with extensions indicating aspects of our knowledge representation.

Thus, our computational model
that the (walk Knight Cave) step 1is more
salient in the reader’s mind than the step
(steal Dragon Treasure) when the reader is
reading the narrative at step (slay Knight Dragon).

would  predict

5. Potential Applications

The computational model we have presented here could be
useful as a generative model for both fabula and discourse
planning. We outline below some of the applications that
a generative model would enable. Generally, if a particular
narrative phenomenon can be expressed in terms of salience
in a person’s memory, the phenomenon, in principle, is
representable in our model.

5.1. Fabula Planning

Using EISM information, an Al planner could construct
the story in a way that it produces a plan according to the
expected salience of events, which (if executed) could op-
timize a person’s feeling of suspense (Cheong and Young,
2006) or surprise (Bae and Young, 2009). Alternatively, we
could use an Al planner to dynamically construct a story
that manipulates salience online, in order to actively affect
a reader’s inference-making process (Niehaus and Young,
2010). The latter manipulation could be used in educational
contexts, with intelligent tutoring systems (Thomas and
Young, 2011), as well as entertainment contexts, to affect
which future events are narratively afforded (Young and
Cardona-Rivera, 2011) by the events perceived in the story
at a given point.

5.2. Cinematic Discourse Planning

Most work in cinematic generation reasons about low-
level frame-by-frame placement of a camera in a virtual
scene (Bares et al., 2000; Christianson et al., 1996).
However, in film, cinematographers either explicitly or
implicitly frame shot sequences to manipulate the mental
state of the viewer (Branigan, 1992). Initial work on
a system which reasons about high level narrative goals
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has been done by Jhala and Young (2010). However,
this work does not make extensive use of a knowledge
representation to characterize a cinematic’s effect on the
mental state of a viewer. EISM has been shown to
accurately model cognition for film (Magliano et al., 2001).
One way for cinematic generators to achieve a higher level
of communicative capability is for them to reason about the
cognitive effects of shots on viewers. Our model could
provide this information. Given a plan step’s saliency
prediction, an planning system could construct a visual
discourse specifically to bring certain information into
focus.

Manipulation of focus would prove useful for many
application that relate to visual discourse. For example, a
character may deliberate on a course of action and decide
to change his or her plan. In these cases a cinematographer
may want to make events salient which help the viewer
infer what a character is currently thinking before the
character makes a drastic change in their intentions. Using
our model, a discourse planner would be able to reason
directly about the effects of shots on the viewer’s mental
state, allowing for the design of cinematic action from a
narrative standpoint.

6. Limitations and Future Work

Our computational model was designed to follow the
cognitive EISM very closely. Our intent is to increase
the likelihood that our model will demonstrate a similar
effectiveness at predicting salience. While the EISM is
an empirically verified and very useful framework for
characterizing the mental state of an audience during online
comprehension, it does not track certain information which
would be useful in a generative computational model of
narrative. Also, there are details of our implementation
which are subject to refinement. We identify some of the
limitations from a computational perspective of the EISM
and Indexter in the subsections that follow.



6.1. Limitations of the EISM

Previous work on situation models have focused on a single
protagonist, and our model is restricted to one protagonist
as well. However, stories often include multiple important
characters beyond the protagonist (e.g. the antagonist)
which may prove to be important indicators of salience. In
these cases, it may be useful to extend our model to more
than one character. Future work will involve determining
the need for extending the protagonist index to account for
multiple characters beyond the protagonist.

Space is a very complicated phenomenon. The EISM
model of space is a simplification, in that it does not require
or provide representations of spatial hierarchies (e.g.,
rooms within buildings), spaces within spaces, movable
spaces (e.g., shipping containers), adjacent spaces, etc. We
are interested in improving the representational capacity
of our computational model to capture these types of
potentially complex spatial relations in a narrative.

As we noted in Section 2.1.3., the current EISM treats
situation model indices as binary (Zwaan et al., 1995a):
two events are either connected by an index or not. In
an effort to accurately depict the cognitive psychology
research, our model treats indices in the same binary
fashion. We are interested in relaxing this constraint to
be able to represent events that are moderately (as opposed
to directly) linked via situation models. We hypothesize
that moderate situational relations will have a significant,
but more gradual effect on saliency. We can think of two
potential ways to approach this limitation:

1. Introduce a distance penalty on the salience score for
distant events. This would be useful when considering
events that happened (in the discourse) relatively early
in comparison to the event that is currently being
perceived. For example, an event further back on a
causal chain should be slightly more difficult to recall
than one which is closer to the step that is currently
being perceived in the causal chain.

2. Allow for a non-dichotomous indexing of events. This
would be useful when considering events that have
a close relationship along one index, but that would
be ignored because there is no strict overlap. For
the space dimension, Zwaan and Radvansky (1998)
have shown that the spatial representation in terms
of distance between objects in an environment does
affect response time of readers when probed with
questions regarding the environment. For example,
consider a spatial relationship of two adjacent rooms
A and B. If the mental representation of the audience
captures this adjacency, mentioning room A in the
discourse will elicit transient memory saliency for
room B.

6.2. Limitations of Indexter

Indexter calculates the salience between two events. Future
work would extend the capabilities of our model to calcu-
late saliency between an event and an object. Experiments
have shown the abilities of people to recall objects or
rooms, not necessarily a specific event alone (Zwaan et al.,
1995b). However, it is not clear how the EISM handles
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this. Future work will determine how to expand Indexter to
handle salience for elements other than events.

Indexter also depends on weights for each index to
determine saliency. The weights we used are arbitrary
and we allow these to be set manually. Knowing
what coefficients accurately represent the predictive power
of each index would increase the accuracy of salience
calculations.  Preliminary research has been done to
determine the index weights (Zwaan et al., 1995a), and
results suggest that these indices could be narrative or
genre-dependent.

In Indexter, salience is calculated by computing a real-
numbered value between 0 and 1 and is always calculated
with respect to another event. Future work would determine
at what point an event becomes salient and if it is dependent
on any specific aspect of the story.

7. Conclusion

Narratives are an important part of the human experience,
and they are used in diverse contexts well beyond
entertainment. Psychologists (e.g., Bruner (1991)) suggest
that narratives are key for explaining the ways that humans
understand and reason about the world around them;
these narrative psychologists posit that people perceive and
interpret activities and behaviors by structuring them into
a narrative. While many approaches to the development
of a computational model of narrative have focused on the
models’ uses when generating stories, the foundational role
that stories play in our cognition suggests that these models
are significant also for the insight they provide to us about
our own intelligence.

Previous approaches to computational models of narrative
have been successful in capturing the diverse structural
aspects of narrative. We propose that reasoning about
the effects of narratives on their audience is the next
step on the path of developing an artificial intelligence
system capable of communicating narratives to humans.
To this end, we have presented Indexter: a computational
operationalization of the Event-Indexing Situation Model,
drawn from the field of cognitive psychology. Our model
extends previous work in computational models of narrative
which uses Al planning constructs. Specifically, we have
modified IPOCL plan structures to be capable of tracking
situation model indices as a narrative is experienced. This
paper presented the foundation of future work, which will
leverage our model to predict the salience in memory
of previously experienced events in a narrative, use that
information to reason about the audience’s mental state, and
generate narrative fabula and discourse to achieve a specific
narrative phenomenon.
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